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A B S T R A C T   

One third of patients with medically refractory focal epilepsy have normal-appearing MRI scans. This poses a 
problem as identification of the epileptogenic region is required for surgical treatment. This study performs a 
multimodal voxel-based analysis (VBA) to identify brain abnormalities in MRI-negative focal epilepsy. Data was 
collected from 69 focal epilepsy patients (42 with discrete lesions on MRI scans, 27 with no visible findings on 
scans), and 62 healthy controls. MR images comprised T1-weighted, fluid-attenuated inversion recovery (FLAIR), 
fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging, and neurite density index 
(NDI) from neurite orientation dispersion and density imaging. These multimodal images were coregistered to 
T1-weighted scans, normalized to a standard space, and smoothed with 8 mm FWHM. Initial analysis performed 
voxel-wise one-tailed t-tests separately on grey matter concentration (GMC), FLAIR, FA, MD, and NDI, comparing 
patients with epilepsy to controls. A multimodal non-parametric combination (NPC) analysis was also performed 
simultaneously on FLAIR, FA, MD, and NDI. Resulting p-maps were family-wise error rate corrected, threshold- 
free cluster enhanced, and thresholded at p < 0.05. Sensitivity was established through visual comparison of 
results to manually drawn lesion masks or seizure onset zone (SOZ) from stereoelectroencephalography. A leave- 
one-out cross-validation with the same analysis protocols was performed on controls to determine specificity. 
NDI was the best performing individual modality, detecting focal abnormalities in 38% of patients with normal 
MRI and conclusive SOZ. GMC demonstrated the lowest sensitivity at 19%. NPC provided superior performance 
to univariate analyses with 50% sensitivity. Specificity in controls ranged between 96 and 100% for all analyses. 
This study demonstrated the utility of a multimodal VBA utilizing NPC for detecting epileptogenic lesions in MRI- 
negative focal epilepsy. Future work will apply this approach to datasets from other centres and will experiment 
with different combinations of MR sequences.   

1. Introduction 

Focal epilepsy is characterized by recurrent seizures that originate 
from specific area(s) of the brain (NICE, 2012). Medication is the first 
line of treatment, but is ineffective in around one third of individuals 
(Mohanraj and Brodie, 2006). In medically refractory focal epilepsy, 

surgery may be considered as a therapeutic approach (Moosa and Wyllie, 
2013). Although the kind of surgery may vary depending on the indi
vidual, successful surgery requires precise spatial identification of the 
causative brain abnormality. In two thirds of individuals with medically 
refractory focal epilepsy cases, MRI identifies the brain lesion; however in 
the remaining one third of cases, MRI scans appear normal (Duncan et al., 
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2016). If MRI does not identify an epileptogenic lesion, further investi
gation including invasive stereoelectroencephalography (SEEG) may be 
required to determine if surgery is viable. 

Voxel-based analysis (VBA) is a potential non-invasive method for 
pre-surgical evaluation. This technique compares brain imaging data on 
a voxel-wise basis between two groups of subjects, or between a patient 
and a control group. 

Voxel-based morphometry (VBM), a VBA using T1-weighted images, 
was first introduced by Ashburner and Friston (2000). VBM has been 
used in various studies to detect abnormalities in focal epilepsy (Bonilha 
et al., 2004; Martin et al., 2017; Riederer et al., 2008). Martin et al. 
(2015) reviewed various studies that reported a VBM analysis based on 
T1 and detailed the general potential of a voxel-based method for lesion 
detection in focal epilepsy. 

Further research has studied the utility of different MRI sequences in a 
VBA for focal epilepsy. Various works performed a VBA on T2-weighted 
fluid-attenuated inversion recovery (FLAIR) sequences, and demon
strated FLAIR to be more reliable than T1 in a VBA (Focke et al., 2008a; 
Focke et al., 2009; Riney et al., 2012). Another study investigated the 
utility of a VBA on different quantitative MRI contrasts, but yielded re
sults with low specificity (Salmenpera et al., 2007). Other work has 
explored diffusion tensor imaging (DTI) sequences in VBA methodolo
gies, and has demonstrated the utility of diffusion-weighted images for 
epileptogenic lesion detection (Focke et al., 2008b; Wang et al., 2018). 

A promising approach for lesion detection in focal epilepsy is by 
performing a VBA on T1-derived contrasts using morphometric analysis 
program (MAP) (Huppertz et al., 2008; Huppertz et al., 2005). The most 
commonly analyzed contrast is a junction map, which details the blur
ring of the grey matter (GM) and white matter (WM) boundary. This 
modification to the VBA technique has been demonstrated to be a 
valuable method for detecting subtle MRI abnormalities in epilepsy with 
high sensitivity (Wang et al., 2015). However, MAP is designed to detect 
specifically focal cortical dysplasia (FCD) and other cortical malforma
tions, and thus would not be a suitable analysis method for a cohort with 
a wide range of epileptogenic pathologies. 

One commonality among the majority of past studies is that they 
have focused on individual analyses of differentially processed MRI se
quences. A largely unexplored potential improvement for this technique 
is an analysis of multiple sequences simultaneously. Literature is limited 
in this field as it requires a large, multimodal dataset. 

Non-parametric combination (NPC) is a multivariate analysis tech
nique that has shown the potential for powerful detection of group 
differences in neuroimaging investigations (Nichols and Holmes, 2001; 
Winkler et al., 2016). This algorithm provides a technique to perform 
joint inference on multiple datasets collected from the same subjects, for 
example considering different MRI modalities jointly. While NPC’s 
utility in epilepsy focused investigation remains currently unexplored, 
this technique has been demonstrated to be an effective solution in work 
focusing on other neurological conditions such as multiple sclerosis and 
Alzheimer’s disease (Bergsland et al., 2018; Fernandes et al., 2019; 
Klaassens et al., 2017). 

We present a multimodal voxel-based analysis to detect epilepto
genic lesions in individuals with refractory focal epilepsy. This approach 
is first applied to patients who have visible lesions in MRI scans to 
validate the capabilities of NPC. Then, the analysis is performed on a 
cohort of patients with focal epilepsy and normal appearing MR images. 
By performing a NPC analysis on these MRI-negative subjects, we aim to 
provide a useful non-invasive tool to be utilized in the pre-surgical 
evaluation of refractory focal epilepsy. 

2. Methods 

2.1. Data 

This study used data gathered from 69 subjects with medically re
fractory focal epilepsy undergoing presurgical evaluation at the National 

Hospital for Neurology and Neurosurgery in London, United Kingdom. 
The diagnosis of these patients with epilepsy was established through 
clinical consensus from medical records. These patients with epilepsy fell 
into two distinct groups. The MRI-positive group was 42 of these in
dividuals who had a visible lesion on MR images. These patients had a 
range of pathologies, including hippocampal sclerosis (HS) (n = 20), brain 
tumour (n = 9), FCD (n = 5), cavernoma (n = 3), encephalomalacia (n =
2), ischaemic damage (n = 2), and heterotopia (n = 1). The remaining 27 
subjects with epilepsy comprised the MRI-negative group; individuals 
who had normal appearing MRI scans. 18 of these MRI-negative subjects 
had ground truth established through stereoelectroencephalography 
(SEEG), while the remaining 9 subjects had inconclusive SEEG. Addi
tionally, data were collected through the same neuroimaging protocols 
from 62 healthy control subjects without any history of neurological or 
psychiatric disease. Further information about these various subjects can 
be found in Table 1. The use of this data for research was approved by the 
National Hospital for Neurology and Neurosurgery and the UCL Queen 
Square Institute of Neurology Joint Ethics Committee, and written 
informed consent was obtained from all subjects. 

MRI imaging was performed on a 3 T GE MR750 scanner. Standard 
imaging gradients were used with a maximum strength of 50 mT/m and 
a maximum slew rate 200 T/m/s. All of the data were acquired using a 
body coil for radiofrequency signal transmission and a 32-channel 
phased array coil for the reception of the signal. 

Standard T1-weighted imaging was performed on these subjects with a 
1 mm isotropic volumetric three-dimensional (3D) T1-weighted inver
sion-recovery fast spoiled gradient recalled echo (echo/repetition/inver
sion time, TE/TR/TI 3.1/7.4/400 ms, field of view (FOV) 224 × 256 ×
256 mm, matrix 224 × 256 × 256, parallel imaging acceleration factor 2). 

Fluid-attenuated inversion recovery (FLAIR) sequences were per
formed with fast spin echo, and with variable flip-angle readout (TE/ 
TR/TI: 137/6200/1882 ms, field of view (FOV) 200 × 256 × 256 mm, 
matrix 200 × 256 × 256). 

Multi-shell diffusion MRI data were acquired with a 2 mm isotropic 
single-shot spin echo sequence that had a FOV of 256 × 256 mm, matrix 
128 × 128 and 70 slices (TR/TE = 7600/74.1 ms; ∂/Δ = 21.5/35.9 ms; 
parallel imaging acceleration factor 2). A total of 115 volumes were 
acquired with 11, 8, 32, and 64 gradient directions at b-values of 0, 300, 
700, and 2500 s/mm2 respectively as well as a single b = 0-image with 
reverse phase-encoding (B0). Distortion correction was performed on 
this data to allow its use in later registration to T1. 

From these diffusion data, the diffusion tensor imaging (DTI) metrics 
fractional anisotropy (FA) and mean diffusivity (MD) were obtained using 
REKINDLE in ExploreDTI v4.8.6 (Leemans et al., 2009; Tax et al., 2014). 
Estimates of intracellular volume fraction as a marker of neurite density 
index (NDI) were obtained with the NODDI MATLAB Toolbox v0.9 
(Zhang et al., 2012). FA, MD and NDI were utilized as previous studies 
have indicated their promise when used for lesion detection in focal ep
ilepsy (Focke et al., 2008b; Wang et al., 2018; Winston et al., 2014) 

Ground truth masks were generated for subjects with epilepsy. In 
MRI-positive patients, ground truth was represented by lesion masks 

Table 1 
Summary of clinical and demographic information for the MRI-positive, MRI- 
negative and control cohorts.   

MRI-Positive 
Group 

MRI- 
Negative 
Group 

Control 
Group 

Number of Individuals 42 27 62 
Age median years 

[interquartile range] 
33.5 
[29.25–37.75] 

35 [24.5–39] 39 [30–50] 

Gender male:female 21:21 17:10 22:40 
Age of Onset median years 

[interquartile range] 
14.5 [6–21.75] 14 [6.5–19] N/A 

Duration of Disease median 
years [interquartile range] 

20 [9–28.75] 18 [11–27] N/A  

J. Isen et al.                                                                                                                                                                                                                                      



NeuroImage: Clinical 32 (2021) 102837

3

that were manually drawn by a neurologist (GPW) who has worked 
extensively in the field of epilepsy neuroimaging research for 15 years. 
These lesion masks were drawn from visual analysis of coregistered T1 
and FLAIR images. As there was no visible lesion in MRI-negative scans, 
SEEG was utilized to establish ground truth for these subjects. Electrode 
contacts were automatically extracted from CT scans after electrode 
insertion and the SEEG data was then reviewed to identify which elec
trode contacts were involved in seizure onset (SOZ) by the clinical and 
research team (RR, BK, FAC, JSD). These locations were replaced by a 
sphere with a radius of 4 mm. 

2.2. Pre-processing 

The data were pre-processed (Fig. 1) with in-house MATLAB version 
R2019b software (Isen, 2021) that utilized subroutines from the Statis
tical Parametric Mapping 12 (SPM12) suite (Ashburner et al., 2014). 

T1-weighted images were segmented into GM and WM maps to be 
utilized for later normalization and brain mask creation. T1 scans were 
skull stripped using brain extraction tool (BET) in FSL (Jenkinson et al., 
2005) to improve subsequent registration (Fischmeister et al., 2013). 

The non-diffusion weighted (B0) images from the diffusion acquisi
tion were rigidly coregistered to the subject’s skull stripped T1 image, 
and the same transformations were applied to FA, MD and NDI. 

Bias field correction was applied to FLAIR scans to account for signal 
gain variation, and the bias-field corrected FLAIR scans were coregistered 
to the skull stripped T1 image. 

Inter-subject normalization was then performed using diffeomorphic 
anatomical registration using exponentiated lie algebra (DARTEL) 
(Ashburner, 2007). This process created an average brain template from 
every subject’s GM and WM, and also generated flow fields that 
parameterized the deformations from each subject to this template. Data 
from each patient were then normalized to MNI space by using these 
flow fields and average template. Normalization was performed without 
modulation, approximately preserving per voxel concentration of tissue. 
The normalized images were smoothed with an 8 mm FWHM gaussian 
kernel, as per previous voxel-based studies in epilepsy (Beheshti et al. 
2018; Focke et al., 2009; Salmenpera et al. 2007). 

As FLAIR images are not quantitative like the diffusion metrics, in
tensity normalization was required in order to make these scans directly 
comparable between subjects (Focke et al., 2008a). This was performed 
by segmenting cerebellar WM from normalized FLAIR images by using 
normalized WM and the probabilistic cerebellar atlas from FSL as a mask 
(Diedrichsen et al., 2009). The robust mean intensity (5th to 95th 
percentile) from the segmented cerebellar WM was calculated and the 
intensity of the overall normalized FLAIR scan was scaled such that the 
mean cerebellar WM intensity was equal to 1000. The cerebellum was 
chosen as a reference for intensity normalization as individuals with focal 
epilepsy are unlikely to have brain abnormalities in the cerebellum. 

An average brain mask was created to reduce the potential for false 
positive findings in non-brain regions. Brain masks were created for each 
subject by summating normalized grey matter and white matter con
centration (GMC and WMC) and excluding voxels with values below 0.5. 

Fig. 1. Illustration of the pre-processing workflow performed on the various MRI sequences. T1-weighted images are first skull stripped and segmented into grey 
matter (GM) and white matter (WM). FLAIR scans are then corrected for bias. FLAIR and the non-diffusion weighted (B0) scan are then coregistered to the skull- 
stripped T1, and the transformations from the B0 coregistration are applied to FA, MD and NDI. Then, GM, WM, FLAIR, FA, MD and NDI are normalized using 
DARTEL, and smoothed with 8 mm FWHM gaussian kernel. A brain mask is then created using normalized GMC and WMC. Finally, the mask is applied to the 
normalized data, and univariate and multimodal analyses are performed on normalized GMC, FLAIR, FA, MD and NDI. 
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These individual brain masks were then averaged over all subjects, 
yielding an average brain mask. 

2.3. Statistical analysis 

Univariate analyses of GMC, FA, MD, NDI and FLAIR were performed 
with in-house code (Isen, 2021) that used the FMRIB Software Library’s 
(FSL) randomise tool (Winkler et al., 2014). These individual analyses 
act as a comparator for the subsequent multimodal NPC analysis. 

One-tailed t-tests were performed individually on the normalized, 
smoothed and masked data, comparing each subject with epilepsy to the 
control group. This analysis was performed twice per modality, once 
with a decreased contrast, and then with an increased contrast. Result
ing p-values were family-wise error rate (FWER) corrected to correct for 
multiple comparisons. Threshold-free cluster enhancement (TFCE) was 
applied with default parameters (height = 2, extent = 0.5, connectivity 
= 6) (Smith and Nichols, 2009). P-maps were thresholded at a p-value of 
0.05, and these thresholded p-maps ultimately represented statistically 
significant findings from the univariate analyses. 

The univariate analyses demonstrated that abnormalities were asso
ciated with decreases in FA and NDI, increases in FLAIR and MD, and 
either increases or decreases in GMC. These same directional changes 
were observed in previous studies (Focke et al., 2008b; Focke et al., 2009; 
Riney et al., 2012; Beheshti et al., 2018). Consequently, in order to look 
for abnormalities in one concordant direction in the simultaneous anal
ysis, normalized FLAIR and MD were multiplied by − 1. However, as our 
NPC analysis looks for changes across multiple modalities with a 
concordant direction of change, GMC was excluded from the multimodal 
analysis given the lack of a consistent direction of change. 

A voxel-wise, multivariate NPC analysis was then performed (Fig. 2). 
This algorithm first performs partial tests on each modality, testing each 
individual hypothesis separately with permutations synchronized across 
the dataset. Resulting partial test u-values (p-value analogs that act as 
transitional values) from each permutation are then combined into a joint 
inference using a combining function. This results in a combined joint 
statistic for each permutation, and thus a p-value of the joint test from the 
empirical distribution of combined u-values (Winkler et al., 2016). 

This multimodal NPC analysis was performed using FSL’s permuta
tion analysis of linear models (PALM) tool (Winkler et al., 2016). This 
analysis was performed for each subject with epilepsy in comparison to 
the control group over the modalities FLAIR, FA, MD, and NDI. NPC was 
performed with 10,000 permutations. Partial tests were combined into a 
joint inference using the Stouffer combining function (Winkler et al., 
2016). FWER correction and TFCE were applied to resulting p-values 
across all modalities, and resulting p-maps were thresholded at 0.05. 

The control group was analyzed in a leave-one-out cross-validation to 
assess specificity. Using the same univariate and NPC analysis methods 
outlined above, each control subject was compared to the control group 
without that particular subject. 

2.4. Validation 

All metrics to establish the capabilities of this methodology were 
reported for the univariate tests on GMC, FA, MD, NDI and FLAIR, and 
for the multimodal NPC analysis. The specificity of this analysis was 
established from the results of the control group leave-one-out cross 
validation, and was defined as follows:  

specificity = (# of control subjects without findings in p-maps / total # of 
control subjects) * 100%                                                                         

The sensitivity of the analysis was established through visual com
parison between thresholded p-maps from subjects with epilepsy and 
their respective ground truth masks (Fig. 3). As 9 MRI-negative subjects 
had inconclusive ground truth SEEG, sensitivity for this cohort was 
calculated using only subjects with conclusive SOZ (18/27 subjects). 
Sensitivity was defined as follows:  

MRI-positive sensitivity = (# of p-maps from MRI-positive subjects in visual 
concordance with lesion masks / total # of MRI-positive subjects) * 100%       

MRI-negative sensitivity = (# of p-maps from MRI-negative subjects in visual 
concordance with SOZ / total # of MRI-negative subjects with conclusive SOZ) 
* 100%                                                                                                 

Fig. 2. Flowchart detailing the steps of the non-parametric combination algorithm. First, normalized FLAIR, FA, MD and NDI are separately analyzed with 10,000 
synchronized permutations. Test statistics are then converted to p-value analogs called u-values. Resulting u-values are then combined with the Stouffer combining 
function. From the empirical distribution of combined u-values across permutations, a combined p-value is determined. 
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In MRI-positive patients who have precisely defined ground truth lesion masks, 
Dice scores were calculated as a quantitative measure of sensitivity. This metric 
was defined as:                                                                                       

Dice score = (2 * (# of overlapping voxels between MRI-positive subject’s 
thresholded p-map and lesion mask)) / (# of voxels in thresholded p-map + # of 
voxels in lesion mask)                                                                            

Voxel-wise true-positive and false-positive rates were additionally 
reported, and calculated as follows:  

True-positive rate = (Σ (# of voxels in MRI-positive subject’s p-map in 
concordance with lesion mask) / (# of voxels in MRI-positive subject’s lesion 
mask)) / (total # of MRI-positive subjects) * 100%                                       

False-positive rate = (Σ (# of voxels in MRI-positive subject’s p-map outside 
of lesion mask) / (# of voxels in MRI-positive subject’s brain mask)) / (total # of 
MRI-positive subjects) * 100%                                                                 

For the MRI-negative group, the SOZ is only localized to specific elec
trode contact sites so without a precise ground truth lesion definition, dice 
scores, true-positive rates and false-positive rates cannot be determined. 

3. Results 

For both univariate and multimodal anlayses, the resulting metrics 
are summarised in Table 2, and example lesion detection from two MRI- 
positive subjects and one MRI-negative subject are illustrated in Fig. 4. 

3.1. Univariate analyses 

From the MRI-positive cohort, decreased NDI results were visually 
concordant with ground truth lesion most often; 26/42 subjects had 

visually concordant findings, providing a sensitivity of 62%. This was 
followed in decreasing order by increased FLAIR, increased MD, and 
decreased FA. GMC yielded the least optimal sensitivity measures at 
29% and 26% for increased and decreased GMC, respectively (Table S1). 
Decreased FLAIR, decreased MD, increased NDI, and increased FA all 
demonstrated no significant findings in MRI-positive subjects. 

Decreased NDI provided the highest dice score of 0.14, while all 
other univariate analyses resulted in dice scores less than or equal to 
0.10 (Table S2). Decreased NDI also provided the highest voxel-wise 
true-positive measures, detecting on average 20% of lesional voxels in 
MRI-positive subjects. Increased FLAIR, increased MD, and decreased FA 
all demonstrated average voxel-wise true-positive rates around 7–8%. 
Increased and decreased GMC both detected 2–3% of lesional voxels 
(Table S3). All univariate analyses demonstrated voxel-wise false-posi
tive rates less than or equal to 2% (Table S4). 

In patients from the MRI-negative cohort with conclusive ground 
truth, abnormalities similar to SOZ were observed in 33% of subjects 
from decreased NDI. Increased FLAIR and MD both yielded sensitivity 
measures of 28%, while both decreased FA and increased GMC 
demonstrated 22% MRI-negative group sensitivity. Decreased GMC 
provided the worst sensitivity at 17% (Table S5). In MRI-negative sub
jects with inconclusive ground truth, significant findings were found in 
1/9 subjects from decreased FA and increased FLAIR analyses, and 2/9 
subjects from decreased NDI. Increased GMC, decreased GMC and 
increased MD analyses provided no significant findings across all MRI- 
negative, SEEG inconclusive subjects (Table S6). 

The leave-one-out cross validation of controls from the unimodal ana
lyses demonstrated minimal false-positive findings in controls and there
fore high specificity measures. Decreased FA, decreased NDI and decreased 
GMC showed significant abnormality detection in 2/62 control subjects, 

Fig. 3. Sample visual comparison between thresholded p-map and ground truth from a MRI-positive group subject with a glioneuronal tumour. The leftmost image 
shows a T1-weighted scan that is normalized to MNI space and skull-stripped. The second image shows the un-thresholded p-map results from NPC. The third image 
shows the same results but thresholded at a p-value of 0.05 (green), overlaid on the brain mask. The rightmost image shows the same thresholded results (green) with 
the ground truth lesion mask overlaid on top (red), again backed by the brain mask. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 2 
Resulting metrics for the univariate and multimodal analyses.  

Result 
Type 

Cohort Metric Univariate NPC 

Increased 
GMC 

Decreased 
GMC 

Decreased FA Increased 
MD 

Decreased 
NDI 

Increased 
FLAIR 

Voxel-Wise MRI-Positive Dice Score 0.05 0.03 0.08 0.09 0.14 0.10 0.19 
True-Positive Rate 3% 2% 7% 8% 20% 7% 41% 
False-Positive 
Rate 

0% 0% 1% 1% 2% 0% 6% 

Visual Sensitivity 29% 26% 38% 48% 62% 50% 81% 
MRI- 
Negative 

Sensitivity 22% 17% 22% 28% 33% 28% 50% 

Control Specificity 98% 97% 97% 100% 97% 98% 97%  
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resulting in a specificity of 97%. Increased FLAIR and GMC demonstrated a 
specificity of 98%, while increased MD had a specificity of 100%. 

3.2. NPC analysis 

In the MRI-positive group, 34/42 subjects’ p-maps from NPC thresh
olded at a p-value of 0.05 were visually concordant with ground truth 
lesion masks, resulting in a sensitivity of 81%. 

On average, NPC provided a dice score of 0.19, a voxel-wise true- 
positive rate of 41%, and a false-positive rate of 6% in MRI-positive 
subjects (Table 3). 

In subjects from the MRI-negative cohort with conclusive ground 
truth, NPC identified abnormalities visually similar to SOZ with a sensi
tivity of 50% (9/18 subjects). In subjects with inconclusive SEEG, sig
nificant findings were observed in 2/9 of subjects (Table S6, Figure S1). 

The combined multimodal leave-one-out analysis of controls showed 
false-positive findings in 2/62 control subjects. This yielded an average 
specificity from the NPC analysis of 97%. 

4. Discussion 

4.1. Key findings 

The separate univariate analyses generally provided results with 
very high specificity, but lacking sensitivity. NDI was the best per
forming modality, yielding a sensitivity of 62% in the MR-positive group 
while the analysis of other modalities had sensitivities all below 50%. 
Analyses on FA, MD and FLAIR all provided sensitivity measures ranging 
from around 40–50% in MRI-positive subjects, while GMC performed 
the worst of the individual modalities. The same trends were seen in the 
MRI-negative cohort analysis; poor sensitivity, NDI outperforming 
others, and GMC providing the worst results. While the sensitivities 
observed from these univariate analyses differed, the specificities were 
comparable between all modalities; near 100% specificity was observed 
for all individually analyzed modalities. 

The simultaneous multmodal analysis using NPC yielded results with 
generally high specificity and sensitivity. This methodology worked very 
well on the MRI-positive group; the high visual sensitivity and voxel-wise 

Fig. 4. Example lesion detection for 3 different subjects with focal epilepsy. The top row illustrates a MRI-positive subject with FCD, the middle row a MRI-positive 
subject with HS, and finally the bottom row a MRI-negative subject with normal appearing MR images. The first column of images shows a skull-stripped and 
normalized T1-weighted scan. The second column shows the ground truth mask (red) overlaid on T1. This ground truth is represented by a lesion mask for the two 
MRI-positive subjects, and SOZ for the MRI-negative subject. The third column shows the results of the NPC analysis (green) overlaid on T1. The fourth column shows 
the results of the univariate NDI analysis (yellow) overlaid on T1. The fifth column shows the results of the univariate FA analysis (purple) overlaid on T1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Voxel-wise true-positive lesion detection rates for MRI-positive subjects, grouped by pathology.  

Pathology Univariate NPC 

Increased GMC Decreased GMC Decreased FA Increased MD Decreased NDI Increased FLAIR 

Tumour 
n = 9 

0% 1% 0% 2% 30% 13% 51% 

Cavernoma 
n = 3 

0% 0% 21% 2% 18% 0% 13% 

Encephalomalacia / Ischaemic Damage 
n = 4 

12% 3% 38% 48% 58% 15% 69% 

Focal Cortical Dysplasia/Heterotopia 
n = 6 

16% 12% 2% 3% 29% 17% 51% 

Hippocampal Sclerosis 
n = 20 

0% 1% 4% 5% 6% 1% 31% 

Total MRI-Positive Group 
n = 42 

3% 2% 7% 8% 20% 7% 41%  
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concordance rate combined with a low voxel-wise false-positive rate 
demonstrated the potential of a multimodal voxel-based analysis to not 
only localize lesions reliably, but to also define their shape accurately. 

NPC also showed an ability to localize brain abnormalities in MRI- 
negative patients. While the accuracy of the identified lesion’s shape 
could not be quantitatively assessed for these subjects due to the nature 
of the ground truth, findings were visually concordant with SOZ in half 
of subjects. This finding suggests that NPC in a VBA analysis has po
tential to detect abnormalities invisible upon review of MR images. 

This methodology demonstrated an ability to detect a variety of 
different pathologies, although at varying degrees of success. MRI- 
positive subjects with encephalomalacia, ischaemic damage, FCD, and 
tumours all provided voxel-wise concordant rates above 50%, indicating 
that the majority of the abnormality was identified. Conversely, the HS 
and cavernoma cohorts provided less complete lesion detection results, 
identifying on average 31% and 13% of lesional voxels, respectively. 

In the majority (7/9) of MRI-negative subjects who had inconclusive 
SOZ, the NPC analysis yielded no significant results suggesting that in 
clinical practice, this technique is unlikely to mislead clinicians. In one 
subject, significant findings in the left temporal lobe were concordant 
with interictal epileptiform discharge (IED) masks obtained from SEEG. 
In the second subject with significant findings, results were not 
concordant with IED and may be false positive findings. 

4.2. Multivariate vs. Univariate 

In all cases, findings were more abundant from the multimodal 
analysis than from the univariate analyses; sensitivity was higher for MRI 
positive and negative subjects, as was the average true-positive rate and 
dice score from the MRI-positive group. This indicates that combining 
data from different MRI sequences has the potential to increase the 
sensitivity of lesion localization in focal epilepsy. 

One area where univariate analyses outperformed NPC was with 
false-positive findings in MRI-positive subjects. Each of the individually 
analyzed modalities yielded false-positive rates notably lower than the 
6% observed from NPC. This is likely attributed to the demonstrated 
ability for the multimodal approach to detect more subtle change. If the 
NPC analysis is more sensitive to change and therefore yields more 
abundant significant findings, then intuitively both true-positive and 
false-positive values would be increased. 

4.3. Comparison to previous literature 

A previous VBA of FLAIR images demonstrated concordant findings 
in 14.3% of MRI-negative focal epilepsy patients, and false-positive 
findings in 4% of controls (Focke et al., 2009). This sensitivity is 
markedly lower than the 50% observed from our NPC analysis, and is 
more comparable to the results of the univariate analyses. The speci
ficity of this study is similar to the near 100% observed from our uni
variate and multivariate analyses. This study differed from ours in 
various ways; it performed only a univariate analysis on FLAIR, utilized 
video-EEG telemetry as ground truth, and had a smaller control cohort 
(n = 25). 

Similar comparability to univariate analyses but inferiority to the 
NPC analysis is demonstrated in a previous study that performed a VBA 
on different quantitative contrasts (Salmenpera et al., 2007). With these 
different modalities, 31% of MRI-negative patients had findings in the 
same lobe as seizure onset, and minimal findings were found in controls. 

Kotikalapudi et al. (2018) provided a concordance rate of 46%, and a 
specificity of 37% from an analysis of differentially processed T1 scans in 
MRI-negative focal epilepsy. This study yielded a sensitivity higher than 
our univariate analyses but still lower than the NPC analysis. The speci
ficity of this work was distinctively lower than our analysis. While various 
MR sequences were used in this work, it was not multimodal in the same 
nature as our study; the data was not analyzed directly in a multivariate 
analysis and was only used to preprocess T1-weighted images. 

A study by Wang et al. (2015) that utilized MAP in a univariate VBA 
demonstrated lesion detection with 90% sensitivity, and 67% specificity 
in MRI-negative patients. This sensitivity measure is significantly higher 
than that observed from our multivariate NPC analysis (50%), however 
the specificity of our approach (97%) is noticeably higher than the 67% 
yielded from the MAP approach. Thus, these two different approaches to 
subtle lesion detection in focal epilepsy provided promising results in 
contrasting metrics. While literature has demonstrated that MAP is very 
useful for abnormality detection in focal epilepsy, MAP is designed to 
detect only FCD and other cortical malformations. The NPC analysis 
conversely demonstrated an ability to detect abnormalities across a wide 
range of pathologies. 

A recent study by our group demonstrated a sensitivity of 61% from 
lesion detection in MRI-negative patients, and a specificity of 99% in 
controls (Kanber et al., 2021). This sensitivity is comparable to the 50% 
measure observed with this NPC analysis, as is the specificity compared to 
the 97% observed in this study. While the dataset is the same as the one 
utilized in this study, the methodology of the aforementioned study is very 
different from this work, applying a machine learning approach instead of 
a purely voxel-based analysis. In our prior work, to train a network to 
detect lesions reliably, a sufficiently sized training set of subjects with 
manually drawn lesion masks is required. This is a time-consuming pro
cess and is often rate-limiting. In contrast, the present work can be easily 
performed with an appropriate control set on individual subjects and can 
thus be more readily applied to data from other centres. 

As this study and past literature have used non-identical pre-process
ing pipelines, various means of establishing sensitivity and specificity, and 
substantially distinct cohorts of patients, comprehensive conclusions from 
direct comparisons to past literature should not be made. 

5. Limitations 

This study was limited by the number of available subjects. While the 
size of the control cohort was comparable to those used in other similar 
studies (Martin et al., 2017; Bruggemann et al., 2009; Salmenpera et al., 
2007), a larger control group may have led to more accurate results. The 
sample size for MRI-positive subjects with certain pathologies was 
limited to only a few individuals. The MRI-negative cohort was limited 
to only 27 subjects as a minority of patients with focal epilepsy have 
normal appearing MR scans. The resulting metrics from this cohort were 
additionally limited as we only included patients who had established 
ground truth in the metric calculations. To obtain a more accurate 
illustration of the potential of this methodology, future studies should 
strive to utilize data from a larger cohort. 

As p-values may change with the amount of data used in analysis, 
this form of thresholding may have been a limitation to this study. An 
alternative method to consider in future studies could be thresholding by 
effect size; this approach has been demonstrated to provide findings 
more replicable and consistent than p-value thresholds, regardless of 
sample size (Vandekar and Stephens, 2021). 

The inability to include T1 GMC in the multivariate analysis is a 
limitation, given the utility of this modality for focal epilepsy lesion 
detection demonstrated by past VBM analyses (Bonilha et al., 2004; 
Martin et al., 2017). However, the poor individual performance of GMC 
from the univariate analysis suggests that it may not have been helpful 
to improve the results of the NPC analysis. Consideration could instead 
be given to incorporating T1-derived contrasts from MAP as additional 
modalities in a multivariate analysis, as previous studies have shown 
MAP to be a practical tool for subtle abnormality detection in focal 
epilepsy (Huppertz et al. 2008; Wang et al. 2015). 

As results from the MRI-positive group were validated against 
ground truth lesion masks, a limitation may have come from the quality 
of these manually drawn masks at representing the full extent of ground 
truth. Upon additional reviews of the T1 scans subsequent to the NPC 
analysis, there were a few cases where lesion masks failed to detail 
subtle features of abnormalities that the NPC analysis did in fact detect. 
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In these cases, voxels were labelled as false-positive when they were in 
actuality true-positive. 

The demonstrated ability for this methodology to detect brain ab
normalities not seen in MR images may have also misleadingly inflated 
false-positive rates in MRI-positive subjects. Lesion masks simply 
represent the lesional area visible in MR images, but may not in every 
case represent the full scope of the epileptogenic lesion. In some subjects 
with HS, NPC detected additional abnormalities in the temporal lobe 
that were not visible in MR scans. This is interesting, as HS is often 
associated with temporal pole abnormalities (Winston et al., 2020). 

Due to these limitations with the ground truth for the MRI-positive 
cohort, in many cases voxel-wise false-positive rates were likely infla
ted and consequently true-positive rates deflated. As such, these voxel- 
wise metrics should only be perceived as an indicator of this method
ology’s capability to detect subtle features of lesions, and not as an exact 
measure of its success. The visual sensitivity metric is thus a more 
general and reliable representation of the capability for NPC with 
multimodal data to detect epileptogenic lesions. 

6. Conclusion 

This work successfully demonstrates the superior performance of a 
simultaneous, multimodal VBA utilizing NPC for detecting epileptogenic 
lesions in focal epilepsy, both in cases of visible and non-visible lesions 
in MRI scans. In subjects with MRI-negative focal epilepsy, this may 
prove especially helpful in the pre-surgical evaluation process for these 
individuals. 

Future work will look to apply this approach to data acquired from 
other centres to ascertain its capabilities on a broad range of data. Uti
lizing a larger dataset will improve the reliability and possibly the ac
curacy of results. Furthermore, future studies will look at different 
combinations of MRI sequences in a NPC analysis to further improve this 
methodology. 
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